An Atlas of Robust, Stable, High-Dimensional Limit Cycles
نویسندگان
چکیده
We present a method for constructing dynamical systems with robust, stable limit cycles in arbitrary dimensions. Our approach is based on a correspondence between dynamics in a class of differential equations and directed graphs on the n-dimensional hypercube (n-cube). When the directed graph contains a certain type of cycle, called a cyclic attractor, then a stable limit cycle solution of the differential equations exists. A novel method for constructing regulatory systems that we call minimal regulatory networks from directed graphs facilitates investigation of limit cycles in arbitrarily high dimensions. We identify two families of cyclic attractors that are present for all dimensions n ≥ 3: cyclic negative feedback and sequential disinhibition. For each, we obtain explicit representations for the differential equations in arbitrary dimension. We also provide a complete listing of minimal regulatory networks, a representative differential equation, and a bifurcation analysis for each cyclic attractor in dimensions 3–5. This work joins discrete concepts of symmetry and classification with analysis of differential equations useful for understanding dynamics in complex biological control networks.
منابع مشابه
Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملA METAHEURISTIC-BASED ARTIFICIAL NEURAL NETWORK FOR PLASTIC LIMIT ANALYSIS OF FRAMES
Despite the advantages of the plastic limit analysis of structures, this robust method suffers from some drawbacks such as intense computational cost. Through two recent decades, metaheuristic algorithms have improved the performance of plastic limit analysis, especially in structural problems. Additionally, graph theoretical algorithms have decreased the computational time of the process impre...
متن کاملBifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix
The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...
متن کاملAsymptotically stable limit cycles generation by using nullspace decomposition and energy regulation
In this paper we address the problem of generating asymptotically stable limit cycles for a fully actuated multibody mechanical system through a feedback control law. Using the concept of conditional stability the limit cycle can be designed for a lower dimensional dynamical system describing how the original one evolves on a chosen submanifold and the corresponding velocity space. Moreover, th...
متن کاملRobust bursting to the Origin: heteroclinic Cycles with Maximal Symmetry Equilibria
Robust attracting heteroclinic cycles have been found in many models of dynamics with symmetries. In all previous examples, robust heteroclinic cycles appear between a number of symmetry broken equilibria. In this paper we examine the first example where there are robust attracting heteroclinic cycles that include the origin, ie a point with maximal symmetry. The example we study is for vector ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 19 شماره
صفحات -
تاریخ انتشار 2009